On the Integrality Gap of the Maximum-Cut Semidefinite Programming Relaxation in Fixed Dimension

Fernando Mário de Oliveira Filho Frank Vallentin*

Received 9 August 2018; Published 6 August 2020

Abstract: We describe a factor-revealing convex optimization problem for the integrality gap of the maximum-cut semidefinite programming relaxation: for each $n \geq 2$ we present a convex optimization problem whose optimal value is the largest possible ratio between the value of an optimal rank-n solution to the relaxation and the value of an optimal cut. This problem is then used to compute lower bounds for the integrality gap.

Key words and phrases: maximum-cut problem, semidefinite programming, integrality gap

1 Introduction

For $x, y \in \mathbb{R}^n$, write $x \cdot y = x_1y_1 + \cdots + x_ny_n$ for the Euclidean inner product. Let $S^{n-1} = \{x \in \mathbb{R}^n : x \cdot x = 1\}$ be the $(n-1)$-dimensional unit sphere. Given a nonempty finite set V, a nonnegative matrix $A \in \mathbb{R}^{V \times V}$, and an integer $n \geq 1$, write

$$\text{SDP}_{n}(A) = \max \left\{ \sum_{x,y \in V} A(x,y)(1 - f(x) \cdot f(y)) : f : V \rightarrow S^{n-1} \right\}.$$ (1)

Replacing S^{n-1} above by S^∞, the set of all sequences (a_k) such that $\sum_{k=0}^{\infty} a_k^2 = 1$, we obtain the definition of $\text{SDP}_{\infty}(A)$.

*This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie agreement No 764759. The second author is partially supported by the SFB/TRR 191 “Symplectic Structures in Geometry, Algebra and Dynamics” and by the project “Spectral bounds in extremal discrete geometry” (project number 414898050), both funded by the DFG.

© 2020 Fernando Mário de Oliveira Filho and Frank Vallentin
Licensed under a Creative Commons Attribution License (CC-BY)
Given a finite (loopless) graph $G = (V,E)$ and a nonnegative weight function $w: E \to \mathbb{R}_+$ on the edges of G, the maximum-cut problem asks for a set $S \subseteq V$ that maximizes the weight

$$\sum_{e \in \delta(S)} w(e) = \sum_{x \in S, y \in V \setminus S, xy \in E} w(xy)$$

of the cut $\delta(S) = \{ e \in E : |e \cap S| = 1 \}$. If $A: V \times V \to \mathbb{R}$ is the matrix such that $A(x,y) = w(xy)$ when $xy \in E$ and $A(x,y) = 0$ otherwise, then the weight of a maximum cut is $(1/4) \text{SDP}_1(A)$.

SDP$_n(A)$ is actually the optimal value of a semidefinite program with a rank constraint, namely

$$\max \sum_{x,y \in V} A(x,y)(1 - M(x,y))$$

$$M(x,x) = 1 \text{ for } x \in V,$$

$$M \in \mathbb{R}^{V \times V} \text{ is positive semidefinite and has rank at most } n.$$ (2)

In SDP$_\infty(A)$ the rank constraint is simply dropped. The optimization problem SDP$_\infty(A)$ is the semidefinite programming relaxation of the maximum-cut problem.

Obviously, SDP$_\infty(A) \geq \text{SDP}_1(A)$. In a fundamental paper, Goemans and Williamson [8] showed that, if A is a nonnegative matrix, then

$$\text{SDP}_1(A) \geq \alpha_{GW} \text{SDP}_\infty(A),$$

where

$$\alpha_{GW} = \min_{t \in [-1,1]} \frac{1 - (2/\pi) \arcsin t}{1 - t} = 0.87856 \ldots.$$

The n-dimensional integrality gap of the semidefinite programming relaxation is

$$\gamma_n = \sup \left\{ \frac{\text{SDP}_n(A)}{\text{SDP}_1(A)} : A \text{ is a nonnegative matrix} \right\},$$

but it is often more natural to work with its reciprocal $\alpha_n = \gamma_n^{-1}$. Goemans and Williamson thus showed that $\alpha_n \geq \alpha_{GW}$; Feige and Schechtman [7] later showed that $\alpha_n = \alpha_{GW}$ (see also §8.3 in Gärtner and Matoušek [9]).

In dimension 2 it is known that

$$\alpha_2 = \frac{32}{25 + 5\sqrt{5}} = 0.88445 \ldots.$$ (3)

The ‘\leq’ direction was shown by Delorme and Poljak [4, 5]; the ‘\geq’ direction was shown by Goemans in an unpublished note (cf. Avidor and Zwick [2], who also provide another proof of this result). Avidor and Zwick [2] showed that $\alpha_3 \geq 0.8818$. Except for $n = 2$ and 3, it is an open problem whether $\alpha_n > \alpha_\infty = \alpha_{GW}$.

DISCRETE ANALYSIS, 2020:10, 17pp.
1.1 A factor-revealing optimization problem

Theorem 1.1 below gives a factor-revealing optimization problem for \(\alpha_n \); an optimization problem defined for each \(n \geq 2 \) whose optimal value is \(\alpha_n \). Relaxations of it can be solved by computer to give upper bounds for \(\alpha_n \), as done in §4.

For a finite and nonempty set \(U \), write

\[
\text{CUT}_\square(U) = \text{conv}\{ f \otimes f^\ast : f : U \to \{-1, 1\}\}
\]

where \(f \otimes f^\ast \) is the external product of the vector \(f \), that is, the matrix whose entry \((x, y)\) is \(f(x)f(y) \). This set is known as the cut polytope and was extensively investigated [6].

A kernel is a square-integrable (with respect to the Lebesgue measure) real-valued function on \(S^{n-1} \times S^{n-1} \); the set of continuous kernels is denoted by \(C(S^{n-1} \times S^{n-1}) \). Write

\[
\text{CUT}_\square(S^{n-1}) = \{ K \in C(S^{n-1} \times S^{n-1}) : (K(x,y))_{x,y \in U} \in \text{CUT}_\square(U) \}
\]

for every finite and nonempty \(U \subseteq S^{n-1} \).

In principle, it is not clear that anything other than the constant 1 kernel is in \(\text{CUT}_\square(S^{n-1}) \). If \(f : S^{n-1} \to \{-1, 1\} \) is any nonconstant measurable function, then one could be tempted to say that \((x, y) \mapsto f(x)f(y) \) is in \(\text{CUT}_\square(S^{n-1}) \), but no such kernel is continuous, so to see that \(\text{CUT}_\square(S^{n-1}) \) is nontrivial requires a more complicated argument. Fix \(e \in S^{n-1} \) and let \(f(x) \) be 1 if \(e \cdot x \geq 0 \) and \(-1 \) otherwise; let \(K(x,y) = (2/\pi) \arcsin e \cdot y \) for every \(x, y \in S^{n-1} \). Grothendieck’s identity says that

\[
K(x,y) = \int_{O(n)} f(Tx)f(Ty) \, d\mu(T),
\]

where \(O(n) \) is the group of \(n \times n \) orthogonal matrices and \(\mu \) is the Haar measure on \(O(n) \) normalized so the total measure is 1. Then it is easy to see that \(K \) is continuous and that it belongs to \(\text{CUT}_\square(S^{n-1}) \). This kernel was first considered by McMillan [12], who was perhaps the first to use such an infinite-dimensional analogue of the cut polytope.

We say that a kernel \(K \) is invariant if \(K(Tx, Ty) = K(x, y) \) for all \(T \in O(n) \) and \(x, y \in S^{n-1} \). An invariant kernel is in fact a univariate function, since the value of \(K(x, y) \) depends only on the inner product \(x \cdot y \). Hence for \(t \in [-1, 1] \) we write \(K(t) \) for the common value taken by \(K \) on pairs \((x, y)\) with inner product \(t \).

Theorem 1.1. If \(n \geq 2 \), then \(\alpha_n \) is the optimal value of

\[
\sup \alpha \quad 1 - K(t) \geq \alpha(1-t) \quad \text{for all } t \in [-1, 1],
\]

(4)

\(K \in \text{CUT}_\square(S^{n-1}) \) is invariant.

This theorem is similar to the integral representation for the Grothendieck constant [14, Theorem 3.4]. The easy direction is to show that the optimal value of (4) is at most \(\alpha_n \).
Proof of the easy direction of Theorem 1.1. Let \((K, \alpha)\) be a feasible solution of (4) and let \(A \in \mathbb{R}^{V \times V}\) be any nonnegative matrix and \(f : V \to S^{n-1}\) be a function achieving the maximum in \(\text{SDP}_n(A)\). Note \((K(f(x), f(y)))_{x, y \in V} \in \text{CUT}_{\square}(V)\). This implies that there are nonnegative numbers \(\lambda_1, \ldots, \lambda_r\) that sum up to 1 and functions \(f_1, \ldots, f_r : V \to \{-1, 1\}\) such that
\[
K(f(x), f(y)) = K(f(x) \cdot f(y)) = \lambda_1 f_1(x)f_1(y) + \cdots + \lambda_r f_r(x)f_r(y)
\]
for all \(x, y \in V\). But then
\[
\text{SDP}_1(A) \geq \sum_{k=1}^{r} \lambda_k \sum_{x, y \in V} A(x, y)(1 - f_k(x)f_k(y))
\]
\[
= \sum_{x, y \in V} A(x, y)(1 - K(f(x) \cdot f(y)))
\]
\[
\geq \alpha \sum_{x, y \in V} A(x, y)(1 - f(x) \cdot f(x))
\]
\[
= \alpha \text{SDP}_n(A),
\]
so \(\alpha \leq \alpha_n\). \(\square\)

A proof that the optimal value of (4) is at least \(\alpha_n\) is given in §2, but it works only for \(n \geq 3\). For \(n = 2\) a direct proof can be given by showing a feasible solution of (4) with objective value \(\alpha_2\); this was done, in a different language, by Avidor and Zwick [2] and is outlined in §3, where a short discussion on how lower bounds for \(\alpha_n\) can be found is also presented.

Notice that the optimization problem (4) is infinite: the kernel \(K\) lies in an infinite-dimensional space and must satisfy infinitely many constraints, not to mention that the separation problem over \(\text{CUT}_{\square}(U)\) is NP-hard since the maximum-cut problem is NP-hard [10]. In §4 we will see how \(K\) can be parameterized and how the problem can be relaxed (by relaxing the constraint that \(K\) must be in \(\text{CUT}_{\square}(S^{n-1})\)) and effectively discretized so it can be solved by computer, providing us with upper bounds for \(\alpha_n\). From feasible solutions of this relaxation, instances with large integrality gap can be constructed, as shown in §4.1.

2 Proof of Theorem 1.1 for \(n \geq 3\)

The difficult part of the proof is to show that the optimal value of (4) is at least \(\alpha_n\). This is done here for \(n \geq 3\), and for this we need a few lemmas.

Let \(\mu\) be the Haar measure on the orthogonal group \(O(n)\), normalized so the total measure is 1. The Reynolds operator \(R\) projects a kernel \(K\) onto the space of invariant kernels by averaging:
\[
R(K)(x, y) = \int_{O(n)} K(Tx, Ty) d\mu(T)
\]
for all \(x, y \in S^{n-1}\). If \(K\) is a continuous kernel, then so is \(R(K)\) [3, Lemma 5.4], and if \(f \in L^2(S^{n-1})\), then \(R(f \otimes f^*)\) is continuous [3, Lemma 5.5], where \(f \otimes f^*\) is the kernel mapping \((x, y)\) to \(f(x)f(y)\).

A function \(f : S^{n-1} \to \mathbb{R}\) respects a partition \(\mathcal{P}\) of \(S^{n-1}\) if \(f\) is constant on each \(X \in \mathcal{P}\); we write \(f(X)\) for the common value of \(f\) in \(X\).
Lemma 2.1. If \(n \geq 2 \), then for every \(\eta > 0 \) there is a partition \(\mathcal{P} \) of \(S^{n-1} \) into finitely many measurable sets such that for every finite set \(I \subseteq [-1,1] \) and every nonnegative function \(z : I \to \mathbb{R} \) there is a function \(f : S^{n-1} \to \{-1,1\} \) that respects \(\mathcal{P} \) and satisfies

\[
\sum_{t \in I} z(t)(1 - R(f \otimes f^*))(t) \geq \sum_{t \in I} z(t)(\alpha_n(1 - t) - \eta). \tag{5}
\]

Proof. Let \(\mathcal{P} \) be any partition of \(S^{n-1} \) into finitely many measurable sets of small enough diameter such that for all \(X, Y \in \mathcal{P}, x, x' \in X \), and \(y, y' \in Y \), we have \(|x \cdot y - x' \cdot y'| \leq \alpha_n^{-1}\eta \). Such a partition can be obtained by considering e.g. the Voronoi cell of each point of an \(\mathcal{E} \)-net for \(S^{n-1} \) for small enough \(\mathcal{E} \).

For \(u \in S^{n-1} \) and \(X \in \mathcal{P} \), write

\[
[u,X] = \{ T \in O(n) : Tu \in X \}.
\]

Then \([u,X] \) is measurable [11, Theorem 3.7], so \(\{ [u,X] : X \in \mathcal{P} \} \) is a partition of \(O(n) \) into measurable sets, and hence for any \(u, v \in S^{n-1} \) so is the common refinement

\[
\{ [u,X] \cap [v,Y] : (X,Y) \in \mathcal{P} \times \mathcal{P} \text{ and } [u,X] \cap [v,Y] \neq \emptyset \}.
\]

Write \(u = (1,0,\ldots,0) \in S^{n-1} \) and for \(t \in [-1,1] \) let \(v_t = (t, (1 - t^2)^{1/2}, 0, \ldots, 0) \), so \(u \cdot v_t = t \). If \(f : S^{n-1} \to \mathbb{R} \) respects \(\mathcal{P} \), then for every finite \(I \subseteq [-1,1] \) and every nonnegative \(z : I \to \mathbb{R} \) we have

\[
\sum_{t \in I} z(t)(1 - R(f \otimes f^*))(t) = \sum_{t \in I} z(t) \int_{O(n)} 1 - f(Tu)f(Tv_t) d\mu(T)
= \sum_{t \in I} z(t) \sum_{X,Y \in \mathcal{P}} \int_{[u,X] \cap [v_t,Y]} 1 - f(Tu)f(Tv_t) d\mu(T)
= \sum_{t \in I} z(t) \sum_{X,Y \in \mathcal{P}} (1 - f(X)f(Y)) \mu(\{ [u,X] \cap [v_t,Y] \})
= \sum_{X,Y \in \mathcal{P}} (1 - f(X)f(Y)) \sum_{t \in I} z(t) \mu(\{ [u,X] \cap [v_t,Y] \}).
\]

By considering the matrix \(A_{\mathcal{E}} : \mathcal{P} \times \mathcal{P} \to \mathbb{R} \) such that

\[
A_{\mathcal{E}}(X,Y) = \sum_{t \in I} z(t) \mu(\{ [u,X] \cap [v_t,Y] \}), \tag{6}
\]

we see that finding a function \(f : S^{n-1} \to \{-1,1\} \) that respects \(\mathcal{P} \) and maximizes the left-hand side of (5) is the same as finding an optimal solution of \(\text{SDP}_1(A_{\mathcal{E}}) \), so there is such a function \(f \) satisfying

\[
\sum_{t \in I} z(t)(1 - R(f \otimes f^*))(t) = \text{SDP}_1(A_{\mathcal{E}}). \tag{7}
\]

Now let \(g : \mathcal{P} \to S^{n-1} \) be such that \(g(X) = x \) for some \(x \in X \) chosen arbitrarily. Recall that the sets
in \mathcal{P} have small diameter, so

\[
\text{SDP}_n(A_z) \geq \sum_{X,Y \in \mathcal{P}} A_z(X,Y)(1 - g(X) \cdot g(Y))
\]

\[
= \sum_{t \in I} z(t) \sum_{X,Y \in \mathcal{P}} (1 - g(X) \cdot g(Y))\mu([u,X] \cap [v_t,Y])
\]

\[
= \sum_{t \in I} z(t) \int_{[u,X] \cap [v_t,Y]} 1 - g(X) \cdot g(Y) \, d\mu(T)
\]

\[
\geq \sum_{t \in I} z(t) \int_{[u,X] \cap [v_t,Y]} 1 - (Tu) \cdot (Tv_t) - \alpha_n^{-1} \eta \, d\mu(T)
\]

\[
= \sum_{t \in I} z(t) \int_{[u,X] \cap [v_t,Y]} 1 - \alpha_n^{-1} \eta \, d\mu(T)
\]

\[
= \sum_{t \in I} z(t)((1 - \alpha_n^{-1} \eta).
\]

Now take any finite $I \subseteq [-1,1]$ and any nonnegative $z: I \to \mathbb{R}$. If f is a function that respects \mathcal{P} and for which (7) holds, then

\[
\sum_{t \in I} z(t)(1 - R(f \otimes f^*)(t)) = \text{SDP}_1(A_z) \geq \alpha_n \text{SDP}_n(A_z) \geq \sum_{t \in I} z(t)(\alpha_n(1 - t) - \eta),
\]

as we wanted. □

Lemma 2.1 is enough to show the following weaker version of the difficult direction of Theorem 1.1:

Lemma 2.2. If $n \geq 2$ and $1 \geq \delta > 0$, then the optimal value of the optimization problem

\[
\sup \alpha \\
1 - K(t) \geq \alpha(1 - t) \quad \text{for all } t \in [-1,1 - \delta],
\]

\[
K \in \text{CUT}(S^{n-1}) \text{ is invariant}
\]

is at least α_n.

Proof. Fix $\eta > 0$ and let \mathcal{P} be a partition supplied by Lemma 2.1. Let \mathcal{F} be the set of all functions $f: S^{n-1} \to \{-1,1\}$ that respect \mathcal{P}; note \mathcal{F} is finite.

Let $I_1 \subseteq I_2 \subseteq \cdots$ be a sequence of finite nonempty subsets of $[-1,1]$ whose union is the set of all rational numbers in $[-1,1]$. Suppose there is no $m_k: \mathcal{F} \to \mathbb{R}$ satisfying

\[
\sum_{f \in \mathcal{F}} (1 - R(f \otimes f^*)(t))m_k(f) \geq \alpha_n(1 - t) - \eta \quad \text{for all } t \in I_k,
\]

\[
\sum_{f \in \mathcal{F}} m_k(f) = 1,
\]

\[
m_k \geq 0.
\]
Farkas’s lemma [16, §7.3] says that, if this system has no solution, then there is \(z : I_k \to \mathbb{R}, \ z \geq 0, \) and \(\rho \in \mathbb{R} \) such that

\[
\rho + \sum_{t \in I_k} z(t)(1 - R(f \otimes f^*)(t)) \leq 0 \quad \text{for all } f \in \mathcal{F},
\]

\[
\rho + \sum_{t \in I_k} z(t)(\alpha_n(1 - t) - \eta) > 0.
\]

Together, these inequalities imply that for every \(f \in \mathcal{F} \) we have

\[
\sum_{t \in I_k} z(t)(1 - R(f \otimes f^*)(t)) < \sum_{t \in I_k} z(t)(\alpha_n(1 - t) - \eta),
\]

a contradiction to the choice of \(\mathcal{P} \).

Since all \(m_k \) lie in \([0, 1]^3\), which is a compact set, the sequence \((m_k)\) has a converging subsequence; say this subsequence converges to \(m : \mathcal{F} \to \mathbb{R} \). Then \(m \geq 0 \) and \(\sum_{f \in \mathcal{F}} m(f) = 1 \). Moreover,

\[
\sum_{f \in \mathcal{F}} (1 - R(f \otimes f^*)(t))m(f) \geq \alpha_n(1 - t) - \eta \quad \text{for all } t \in [-1, 1]. \tag{9}
\]

Indeed, the inequality holds for all \(t \in [-1, 1] \cap \mathbb{Q} \). But \(R(f \otimes f^*) \) is continuous for every \(f \), so the left-hand side above is a continuous function of \(t \), whence the inequality holds for every \(t \in [-1, 1] \).

Fix \(1 \geq \delta > 0 \) and \(\varepsilon > 0 \) and set \(\eta = \alpha_n \varepsilon \delta \); let \(m \) be such that (9) holds. If \(t \leq 1 - \delta \), then \(1 - t \geq \delta \) and

\[
(1 - \varepsilon)(1 - t) = (1 - t) - \varepsilon(1 - t) \leq (1 - t) - \varepsilon \delta.
\]

So, for \(t \in [-1, 1 - \delta] \), the left-hand side of (9) is at least

\[
\alpha_n(1 - t) - \eta = \alpha_n((1 - t) - \alpha_n^{-1} \eta) \geq \alpha_n(1 - \varepsilon)(1 - t).
\]

Now \(K_\varepsilon = \sum_{f \in \mathcal{F}} R(f \otimes f^*)m(f) \) is a continuous kernel that moreover belongs to \(\text{CUT}_{\mathbb{R}}(S^{n-1}) \). So for every \(\varepsilon > 0 \) there is \(K_\varepsilon \in \text{CUT}_{\mathbb{R}}(S^{n-1}) \) such that \((K_\varepsilon, \alpha_n(1 - \varepsilon)) \) is a feasible solution of (8), and by letting \(\varepsilon \) approach 0 we are done. \(\square \)

For \(n \geq 3 \), Theorem 1.1 can be obtained from Lemma 2.2 by using the following lemma.

Lemma 2.3. For every \(n \geq 3 \), there is \(1 \geq \delta > 0 \) such that if \((K, \alpha) \) is any feasible solution of (8), then

\[
1 - K(t) \geq \alpha(1 - t) \quad \text{for all } t \in [1 - \delta, 1].
\]

The proof of this lemma uses some properties of Jacobi polynomials, and goes through only for \(n \geq 3 \). A proof of Theorem 1.1 for \(n = 2 \) is given in §3.

The Jacobi polynomials\(^1\) with parameters \((\alpha, \beta), \ \alpha, \ \beta > -1, \) are the orthogonal polynomials with respect to the weight function \((1 - t)^\alpha(1 + t)^\beta\) on the interval \([-1, 1]\). We denote the Jacobi polynomial with parameters \((\alpha, \beta)\) and degree \(k \) by \(P_k^{(\alpha, \beta)} \) and normalize it so \(P_k^{(\alpha, \beta)}(1) = 1. \)

A continuous kernel \(K : S^{n-1} \times S^{n-1} \to \mathbb{R} \) is positive if \((K(x, y))_{x,y \in U}\) is positive semidefinite for every finite and nonempty set \(U \subseteq S^{n-1} \). Schoenberg [15] characterizes continuous, positive, and invariant kernels via their expansions in terms of Jacobi polynomials:

\(^1\)See for example the book by Szegö [17] for background on orthogonal polynomials.
Theorem 2.4 (Schoenberg’s theorem). A kernel $K: S^{n-1} \times S^{n-1} \to \mathbb{R}$ is continuous, positive, and invariant if and only if there are numbers $a_k \geq 0$ satisfying $\sum_{k=0}^{\infty} a_k < \infty$ such that

$$K(x, y) = \sum_{k=0}^{\infty} a_k P_k^{(\nu, \nu)}(x \cdot y) \quad \text{for all } x, y \in S^{n-1}$$

with absolute and uniform convergence, where $\nu = (n - 3)/2$.

Schoenberg’s theorem is used in the proof of Lemma 2.3 and again in §§3 and 4.

Proof of Lemma 2.3. Fix $n \geq 3$ and set $\nu = (n - 3)/2$. Claim: there is $1 \geq \delta > 0$ such that $t = P_k^{(\nu, \nu)}(t) \geq P_k^{(\nu, \nu)}(t)$ for all $k \geq 2$ and $t \in [1 - \delta, 1]$.

The lemma quickly follows from this claim. Indeed, say (K, α) is feasible for (8). Since every matrix in CUT(U) for finite U is positive semidefinite, every kernel in CUT(S^{n-1}) is positive. Hence using Schoenberg’s theorem we write

$$K(t) = \sum_{k=0}^{\infty} a_k P_k^{(\nu, \nu)}(t) \quad \text{for all } t \in [-1, 1].$$

Since $K \in$ CUT(S^{n-1}), we have $K(1) = 1$, so $\sum_{k=0}^{\infty} a_k = 1$.

As (K, α) is a feasible solution of (8), we know that

$$1 - K(-1) \geq \alpha(1 - (-1)) = 2\alpha.$$

Now $|P_k^{(\nu, \nu)}(t)| \leq 1$ for all k and all $t \in [-1, 1]$, so $K(-1) \geq a_0 - (1 - a_0)$, whence $a_0 \leq 1 - \alpha$. The claim implies that, if $t \in [1 - \delta, 1]$, then

$$K(t) \leq a_0 + (1 - a_0)t,$$

so for $t \in [1 - \delta, 1]$ we have

$$1 - K(t) \geq 1 - a_0 - (1 - a_0)t = 1 - t - a_0(1 - t) \geq 1 - t - (1 - \alpha)(1 - t) = \alpha(1 - t),$$

as we wanted.

To prove the claim, we use the following integral representation of Feldheim and Vilenkin for the Jacobi polynomials: for $\nu \geq 0$,

$$P_k^{(\nu, \nu)}(\cos \theta) = \frac{2\Gamma(\nu + 1)}{\Gamma(1/2)\Gamma(\nu + 1/2)} \int_0^{\pi/2} \cos^{2\nu} \phi (1 - \sin^2 \theta \cos^2 \phi)^{k/2} \cdot P_k^{(-1/2,-1/2)}(\cos \theta (1 - \sin^2 \theta \cos^2 \phi)^{-1/2}) d\phi. \quad (10)$$

This formula is adapted to our normalization of the Jacobi polynomials from Corollary 6.7.3 in the book by Andrews, Askey, and Roy [1]; see also equation (3.23) in the thesis by Oliveira [13].

For fixed θ and ϕ, the function $k \mapsto (1 - \sin^2 \theta \cos^2 \phi)^{k/2}$ is monotonically decreasing. Write $t = \cos \theta$ and recall that the Jacobi polynomials are bounded by 1 in $[-1, 1]$; plug $k = 2$ in the right-hand side of (10) to get

$$P_k^{(\nu, \nu)}(t) \leq \frac{2\Gamma(\nu + 1)}{\Gamma(1/2)\Gamma(\nu + 1/2)} \int_0^{\pi/2} \cos^{2\nu} \phi (1 - (1 - t^2) \cos^2 \phi) d\phi \quad (11)$$
for all \(t \in [0, 1] \) and \(k \geq 2 \). For \(v = (n - 3)/2 \) with \(n \geq 4 \), we show that there is \(\delta > 0 \) such that the right-hand side above is at most \(t \) for all \(t \in [1 - \delta, 1] \); the case \(n = 3 \) will be dealt with shortly.

Let \(m \geq 2 \) be an integer. Write \(\cos^m \phi = \cos^{m-1} \phi \cos \phi \) and use integration by parts to get
\[
m \int_0^{\pi/2} \cos^m \phi \, d\phi = (m-1) \int_0^{\pi/2} \cos^{m-2} \phi \, d\phi.
\]

It follows by induction on \(m \) that, if \(v = (n - 3)/2 \) with \(n \geq 3 \), then
\[
\int_0^{\pi/2} \cos^{2v} \phi \, d\phi = \frac{\Gamma(1/2)\Gamma(v+1/2)}{2\Gamma(v+1)}.
\]

The right-hand side of (11) is a degree-2 polynomial on \(t \); let us denote it by \(p_v \). Use (12) to get
\[
p_v(t) = \frac{2v + 1}{2(v+1)} t^2 + \frac{1}{2(v+1)}.
\]

It is then a simple matter to check that, for \(v = (n - 3)/2 \) with \(n \geq 4 \), there is \(\delta > 0 \) such that \(p_v(t) \leq t \) for all \(t \in [1 - \delta, 1] \).

For \(n = 3 \) and hence \(v = 0 \), we have \(p_v(t) \geq t \) for all \(t \in [0, 1] \). In this case, we may take \(k = 4 \) in (10) and follow the same reasoning, proving that the degree 4 polynomial obtained will have the desired property. It then only remains to show that \(P_2^{(0,0)} \) and \(P_3^{(0,0)} \) are below \(P_1^{(0,0)} \) for \(t \) close enough to 1, and this can be done directly.

All that is left to do is to put it all together.

Proof of Theorem 1.1 for \(n \geq 3 \). In §1.1 we have seen that the optimal value of (4) is at most \(\alpha_n \). The reverse inequality follows from Lemmas 2.2 and 2.3 put together.

3 Lower bounds for \(\alpha_n \) and a proof of Theorem 1.1 for \(n = 2 \)

To get a lower bound for \(\alpha_n \), one needs to show a feasible solution of (4). One such feasible solution, that shows that \(\alpha_n \geq \alpha_{GW} \), is \((K_{GW}, \alpha_{GW})\) with
\[
K_{GW}(x \cdot y) = (2/\pi) \arcsin x \cdot y.
\]

We encountered this kernel in the introduction. Fix \(e \in S^{n-1} \) and let \(f_{GW}: S^{n-1} \to \{-1, 1\} \) be such that \(f_{GW}(x) = 1 \) if \(e \cdot x \geq 0 \) and \(-1\) otherwise. Recall that Grothendieck’s identity is
\[
K_{GW}(x \cdot y) = R(f_{GW} \otimes f_{GW}^*)(x \cdot y),
\]
whence in particular \(K_{GW} \in \text{CUT_G}(S^{n-1}) \).

Let \(t_{GW} \in [-1, 1] \) be such that \(\alpha_{GW} = (1 - K_{GW}(t_{GW}))/ (1 - t_{GW}) \); then \(t_{GW} = -0.68918 \ldots \). The easy direction of the following result is implicit in the work of Avidor and Zwick [2].
Theorem 3.1. If $n \geq 2$, then $\alpha_n > \alpha_{GW}$ if and only if there is an invariant kernel $K \in \text{CUT}_{\Box}(S^{n-1})$ such that

$$1 - K(t_{GW}) > 1 - K_{GW}(t_{GW}). \tag{14}$$

If, moreover, $\alpha_n > \alpha_{GW}$, then there is a measurable function $f : S^{n-1} \to \{-1, 1\}$ such that (14) holds for $K = R(f \otimes f^*)$.

Proof. First the easy direction. Suppose there is such a kernel K. Then

$$1 - K(t_{GW}) > 1 - K_{GW}(t_{GW}) = \alpha_{GW}(1 - t_{GW}). \tag{15}$$

Both functions

$$t \mapsto 1 - K(t) \quad \text{and} \quad t \mapsto 1 - K_{GW}(t)$$

are continuous in $[-1, 1]$. From (15), we see that there is $\varepsilon > 0$ such that the first function above is at least $(\alpha_{GW} + \varepsilon)(1 - t)$ in some interval I around t_{GW}. The second function above is at least $\alpha_{GW}(1 - t)$ in $[-1, 1]$ and, if ε is small enough, then it is at least $(\alpha_{GW} + \varepsilon)(1 - t)$ in $[-1, 1] \setminus I$ (recall from (13) that we know the second function explicitly). But then for some $\lambda \in [0, 1]$ and small enough $\varepsilon' > 0$ we will have that

$$K' = \lambda K + (1 - \lambda) K_{GW} \in \text{CUT}_{\Box}(S^{n-1})$$

is such that $1 - K'(t) \geq (\alpha_{GW} + \varepsilon')(1 - t)$ for all $t \in [-1, 1]$, so the optimal value of (4) is greater than α_{GW} and therefore $\alpha_n > \alpha_{GW}$ from the easy direction of Theorem 1.1 (proved in §1.1).

Now suppose $\alpha_n > \alpha_{GW}$. For every $\eta > 0$, Lemma 2.1 gives a measurable function $f : S^{n-1} \to \{-1, 1\}$ such that

$$1 - R(f \otimes f^*)(t_{GW}) \geq \alpha_n(1 - t_{GW}) - \eta$$

(take $I = \{t_{GW}\}$ and $z = 1$ in the lemma); set $K = R(f \otimes f^*)$. Then

$$1 - K(t_{GW}) \geq \alpha_n(\alpha_{GW}^{-1}(1 - K_{GW}(t_{GW}))) - \eta.$$

Since $\alpha_n / \alpha_{GW} > 1$, we finish by taking η close enough to 0. \hfill \square

Theorem 3.1 shows that, to find a lower bound for α_n, we need to find a better partition of the sphere S^{n-1}, and this can be done by finding a maximum cut in a graph defined on a discretization of the sphere (cf. the proof of Lemma 2.1). This can be tricky in general: Avidor and Zwick [2] present such a better partition for $n = 3$, but their construction is ad hoc. For $n = 2$, however, one may use the hyperplane rounding procedure to obtain such a better partition, in a curious application of the Goemans-Williamson algorithm to improve on itself.

We want to find an invariant kernel $K \in \text{CUT}_{\Box}(S^{n-1})$ satisfying (15), that is, we want to find a good solution of the following optimization problem:

$$\sup 1 - K(t_{GW})$$

implies $K \in \text{CUT}_{\Box}(S^{n-1})$ is invariant.
This seems to be a difficult problem, but we can relax the constraint that \(K \in \text{CUT}(S^{n-1}) \) by requiring only that \(K \) be positive. Then, using Schoenberg’s theorem to parameterize \(K \) as in §2, we get the following relaxation of our problem:

\[
\sup \left(1 - \sum_{k=0}^{\infty} a_k P_k^{(v,v)}(t_{GW}) \right) \quad \text{subject to} \quad \sum_{k=0}^{\infty} a_k = 1, \quad a_k \geq 0 \quad \text{for all } k \geq 0. \tag{16}
\]

For \(n = 2 \) and hence \(v = -1/2 \), the optimal solution of (16) is \(a_k = 0 \) for all \(k \neq 4 \) and \(a_4 = 1 \), as may be proved, for instance, by showing a solution to the dual of (16) having the same objective value as the solution \(a \) (see §4 for a description of the dual problem of a problem related to (16)).

Using formula (5.1.1) from Andrews, Askey, and Roy [1], this means that the optimal kernel is

\[K(\cos \theta) = P_4^{(-1/2,-1/2)}(\cos \theta) = \cos 4\theta. \]

If we identify the circle \(S^1 \) with the interval \([0, 2\pi]\), then the inner product between points \(\theta, \phi \in [0, 2\pi] \) is \(\arccos(\theta - \phi) \), so

\[K(\theta, \phi) = \cos 4(\theta - \phi) = \cos 4\theta \cos 4\phi + \sin 4\theta \sin 4\phi. \]

Taking \(g: S^1 \rightarrow S^1 \) such that \(g(\theta) = (\cos 4\theta, \sin 4\theta) \), we have \(K(\theta, \phi) = g(\theta) \cdot g(\phi) \).

Now, let us round the rank-2 solution \(g \). Let \(e = (1, 0) \) and set \(f(\theta) = 1 \) if \(e \cdot g(\theta) \geq 0 \) and \(f(\theta) = -1 \) otherwise. The resulting partition is exactly the windmill partition that, combined with the partition \(f_{GW} \) of the sphere into two equal halves, shows that

\[\alpha_2 = \frac{32}{25 + 5\sqrt{5}} \]

(cf. Avidor and Zwick [2]); see also Figure 1.

Proof of Theorem 1.1 for \(n = 2 \). In §1.1 we have seen that the optimal value of (4) is at most \(\alpha_2 \). The reverse inequality is proved by Avidor and Zwick [2]: they show how to pick \(\lambda \in [0, 1] \) such that, if \(f: S^1 \rightarrow \{-1, 1\} \) is the windmill partition of Figure 1 and \(f_{GW}: S^1 \rightarrow \{-1, 1\} \) is the partition into two equal halves, then \((K, \alpha)\) with

\[K = \lambda R(f \otimes f^*) + (1 - \lambda) R(f_{GW} \otimes f_{GW}^*) \]

and

\[\alpha = \frac{32}{25 + 5\sqrt{5}} \]

is a feasible solution of (4). Since \(\alpha_2 = \alpha \), we are then done.

For \(n \geq 3 \), the approach outlined above does not work. The optimal solution of the relaxation (16) is always \(a_k = 0 \) for all \(k \neq 1 \) and \(a_1 = 1 \). The hyperplane rounding then gives the partition \(f_{GW} \) into two equal halves, therefore not providing a lower bound for \(\alpha_n \) better than \(\alpha_{GW} \).
Figure 1: On the left we have the unit circle S^1 and, supported on a point θ, the vector $f(\theta) = (\cos 4\theta, \sin 4\theta)$ — in blue if $\cos 4\theta \geq 0$ and in red otherwise. On the right, we have in gray the segments of the circle where $\cos 4\theta \geq 0$; this is the windmill partition.

4 Upper bounds for α_n and bad instances

Let us see how to solve a relaxation of (4) in order to get upper bounds for α_n. The first order of business is to use Schoenberg’s theorem (Theorem 2.4) to parameterize K as

$$K(t) = \sum_{k=0}^{\infty} a_k P_k^{(v)}(t) \quad \text{for all } t \in [-1, 1],$$

where $v = (n-3)/2$, $a_k \geq 0$ for all k, and $\sum_k a_k < \infty$.

Say now that $U \subseteq S^{n-1}$ is a nonempty finite set and $Z: U \times U \to \mathbb{R}$ and $\beta \in \mathbb{R}$ are such that

$$\sum_{x,y \in U} Z(x,y)A(x,y) \geq \beta$$

for all $A \in \text{CUT}_{\square}(U)$, so Z and β give a valid constraint for $\text{CUT}_{\square}(U)$. If $K \in \text{CUT}_{\square}(S^{n-1})$, then

$$\sum_{x,y \in U} Z(x,y)K(x,y) \geq \beta.$$

Rewriting this inequality using the parametrization of K we see that the variables a_k satisfy the constraint

$$\sum_{k=0}^{\infty} a_k r_k \geq \beta,$$

where $r = (r_k)$ is the sequence such that

$$r_k = \sum_{x,y \in U} Z(x,y) P_k^{(v)}(x \cdot y).$$
Let \mathcal{R} be a finite collection of pairs (r, β), each one associated with a valid constraint of $\text{CUT}_{\square}(U)$ for some finite set $U \subseteq S^n - 1$, as described above. Recall that, if $K \in \text{CUT}_{\square}(S^n)$, then $K(1) = 1$, and that $P_k^{(v,v)}(1) = 1$ in our normalization. Choose a finite nonempty set $I \subseteq [-1, 1]$. Then the following linear program with infinitely many variables but finitely many constraints is a relaxation of (4); its optimal value thus provides an upper bound for α_n:

$$
\begin{align*}
\sup \alpha & \quad \sum_{k=0}^{\infty} a_k = 1, \\
\alpha(1-t) + \sum_{k=0}^{\infty} a_k P_k^{(v,v)}(t) & \leq 1 \quad \text{for all } t \in I, \\
\sum_{k=0}^{\infty} a_k r_k & \geq \beta \quad \text{for all } (r, \beta) \in \mathcal{R}, \\
a_k & \geq 0 \quad \text{for all } k \geq 0.
\end{align*}
$$

(18)

A dual problem for (18) is

$$
\begin{align*}
\inf \lambda & + \sum_{i \in I} z(i) - \sum_{(r, \beta) \in \mathcal{R}} y(r, \beta) \beta \\
\sum_{i \in I} z(i)(1-t) & = 1, \\
\lambda + \sum_{i \in I} z(i) P_k^{(v,v)}(t) - \sum_{(r, \beta) \in \mathcal{R}} y(r, \beta) r_k & \geq 0 \quad \text{for all } k \geq 0, \\
z, y & \geq 0.
\end{align*}
$$

(19)

It is routine to show that weak duality holds between the two problems: if (a, α) is a feasible solution of (18) and (λ, z, y) is a feasible solution of (19), then

$$
\alpha \leq \lambda + \sum_{i \in I} z(i) - \sum_{(r, \beta) \in \mathcal{R}} y(r, \beta) \beta.
$$

So to find an upper bound for α_n it suffices to find a feasible solution of (19).

To find such a feasible dual solution we follow the same approach presented by DeCorte, Oliveira, and Vallentin [3, §8] for a very similar problem. We start by choosing a large enough value d (say $d = 2000$) and truncating the series in (17) at degree d, setting $a_k = 0$ for all $k > d$. Then, for finite sets I and \mathcal{R}, problem (18) becomes a finite linear program. We solve it and from its dual we obtain a candidate solution (λ, z, y) for the original, infinite-dimensional dual. All that is left to do is check that this is indeed a feasible solution, or else that it can be turned into a feasible solution by slightly increasing λ. This verification procedure is also detailed by DeCorte, Oliveira, and Vallentin (ibid., §8.3).

Finding a good set $I \subseteq [-1, 1]$ is easy: one simply takes a finely spaced sample of points. Finding a good set \mathcal{R} of constraints is another issue. The approach is, again, detailed by DeCorte, Oliveira, and Vallentin (ibid., §8.3); here is an outline. We start by setting $\mathcal{R} = \emptyset$. Then, having a solution of (18), and having access to a list of facets of $\text{CUT}_{\square}(U)$ for a set U of 7 elements, numerical methods for unconstrained optimization are used to find points on the sphere for which a given inequality is violated. These violated inequalities are then added to (18) and the process is repeated.

Table 1 shows a list of upper bounds for α_n found with the procedure described above. These bounds have been rigorously verified using the approach of DeCorte, Oliveira, and Vallentin.
Table 1: Upper bounds for α_n from a relaxation of problem (4). For $n = 3$, the relaxation gives an upper bound of 0.8854, not better than α_2. These bounds have all been computed considering a same set \mathcal{R} with 28 constraints from the cut polytope found heuristically for the case $n = 4$; improvements could possibly be obtained by trying to find better constraints for each dimension. The bound using \mathcal{R} decreases more and more slowly after $n = 19$; for $n = 10000$ one obtains the upper bound 0.878695.

4.1 Constructing bad instances

A feasible solution of (19) gives an upper bound for α_n, but this upper bound is not constructive, that is, we do not get an instance of the maximum-cut problem with large integrality gap. Let us see now how to extract bad instances for the maximum-cut problem from a solution of (19).

Let $I \subseteq [-1, 1)$ be a finite nonempty set of inner products and \mathcal{R} be a finite set of constraints from the cut polytope. Say (λ, z, y) is a feasible solution of (19) and let

$$\alpha = \lambda + \sum_{t \in I} z(t) - \sum_{(r, \beta) \in \mathcal{R}} y(r, \beta) \beta$$

be its objective value.

The intuition behind the construction is simple. We consider a graph on the sphere S^{n-1}, where $x, y \in S^{n-1}$ are adjacent if $x \cdot y \in I$ and the weight of an edge between x and y is $z(x \cdot y)$. Bad instances will arise from discretizations of this infinite graph.

Given a partition \mathcal{P} of S^{n-1} into finitely many sets, denote by $\delta(\mathcal{P})$ the maximum diameter of any set in \mathcal{P}. Let (\mathcal{P}_m) be a sequence of partitions of S^{n-1} into finitely many measurable sets such that \mathcal{P}_{m+1} is a refinement of \mathcal{P}_m and

$$\lim_{m \to \infty} \delta(\mathcal{P}_m) = 0.$$

For $m \geq 0$, let $A^m_z : \mathcal{P}_m \times \mathcal{P}_m \to \mathbb{R}$ be the matrix defined in (6) for the partition $\mathcal{P} = \mathcal{P}_m$ and the function z. Since \mathcal{P}_{m+1} is a refinement of \mathcal{P}_m, both limits

$$\lim_{m \to \infty} \text{SDP}_1(A^m_z) \quad \text{and} \quad \lim_{m \to \infty} \text{SDP}_n(A^m_z)$$

exist, as the sequences of optimal values are monotonically increasing and bounded. As $z \neq 0$, both limits are positive, hence

$$\lim_{m \to \infty} \frac{\text{SDP}_1(A^m_z)}{\text{SDP}_n(A^m_z)} = (20)$$
exists. Claim: the limit above is at most \(\alpha \).

Once the claim is established, we are done: for every \(\epsilon > 0 \), by taking \(m \) large enough (that is, by taking a fine enough partition) we have

\[
\frac{\text{SDP}_1(A^m)}{\text{SDP}_n(A^m)} \leq \alpha + \epsilon,
\]

that is, we get a sequence of bad instances for the maximum-cut problem.

To prove the claim, suppose (20) is at least \(\alpha + \epsilon \) for some fixed \(\epsilon > 0 \). Then for all large enough \(m \) we have

\[
\text{SDP}_1(A^m) \geq \frac{\alpha + \epsilon}{\text{SDP}_n(A^m)} \cdot \text{SDP}_n(A^m).
\]

Following the proof of Lemma 2.1, this means that for every large enough \(m \) there is a function \(f_m : S^{n-1} \to \{ -1, 1 \} \) that respects \(\mathcal{P}_m \) and satisfies

\[
\sum_{t \in I} z(t) ((1 - R(f_m \otimes f_m^*)(t)) \geq \sum_{t \in I} z(t)((\alpha + \epsilon)(1 - t) - \eta_m),
\]

where \(\eta_m \geq 0 \) and \(\eta_m \to 0 \) as \(m \to \infty \).

Use the feasibility of \((\lambda, z, y)\) for (19) together with the definition of \(\alpha \) to get from the above inequality that

\[
\lambda + \sum_{t \in I} z(t) R(f_m \otimes f_m^*)(t) - \sum_{(r, \beta) \in \mathbb{R}} y(r, \beta) \beta \leq -\epsilon + \eta_m \sum_{t \in I} z(t). \tag{21}
\]

Next, note that \(R(f_m \otimes f_m^*) \in \text{CUT}_{\mathbb{R}}(S^{n-1}) \). Using Schoenberg’s theorem (Theorem 2.4), write

\[
R(f_m \otimes f_m^*)(t) = \sum_{k=0}^{\infty} a_k P_k^{(v, v)}(t),
\]

where \(v = (n - 3)/2 \), \(a_k \geq 0 \), and \(\sum_{k=0}^{\infty} a_k = 1 \). Use again the feasibility of \((\lambda, z, y)\) for (19) together with (21) to get

\[
0 \leq \sum_{k=0}^{\infty} a_k \left(\lambda + \sum_{t \in I} z(t) P_k^{(v, v)}(t) - \sum_{(r, \beta) \in \mathbb{R}} y(r, \beta) r_k \right) \\
\leq \lambda + \sum_{t \in I} z(t) R(f_m \otimes f_m^*)(t) - \sum_{(r, \beta) \in \mathbb{R}} y(r, \beta) \beta \\
\leq -\epsilon + \eta_m \sum_{t \in I} z(t).
\]

Since \(\epsilon > 0 \) and \(\eta_m \to 0 \) as \(m \to \infty \), by taking \(m \) large enough we get a contradiction, proving the claim.

Acknowledgements

We thank the referees for valuable suggestions that improved the paper.
References

The integrality gap of the maximum-cut semidefinite relaxation in fixed dimension

AUTHORS

F.M. de Oliveira Filho
Delft Institute of Applied Mathematics
Delft University of Technology
Van Mourik Broekmanweg 6, 2628 XE Delft, The Netherlands.
fmario@gmail.com

F. Vallentin
Mathematisches Institut
Universität zu Köln
Weyertal 86–90, 50931 Köln, Germany.
frank.vallentin@uni-koeln.de